DeepMind发布AlphaGenome:解码DNA"暗物质"的AI新突破

继 AlphaFold 获得诺贝尔化学奖之后,Google DeepMind 再次在生物学领域取得重大突破——发布了 AlphaGenome,一个能够预测非编码 DNA 功能的 AI 模型。

什么是 DNA 的「暗物质」?

我们的基因组中,超过 98% 的 DNA 并不编码蛋白质。这些曾被称为「垃圾 DNA」的序列,现在被科学家认为是决定基因活性的关键——它们就像基因的「开关」,控制着基因何时开启、何时关闭。

问题是:这些非编码 DNA 究竟如何影响我们的健康?这一直是生物学的未解之谜。

AlphaGenome 能做什么?

能力 说明
超长序列输入 最长 100 万个 DNA 碱基对
突变影响预测 预测序列突变如何影响基因表达
致病突变筛选 帮助科学家缩小搜索范围

DeepMind 副总裁 Pushmeet Kohli 打了个比方:

「基因组就像一本 30 亿字符的巨书,AlphaGenome 能告诉你:如果改变其中某些词,会产生什么影响。」

技术突破

相比之前的工具,AlphaGenome 的关键突破在于:

  • 超长序列处理:之前的模型在序列长度和准确性之间必须取舍,AlphaGenome 两者兼得
  • 多数据集融合:整合了多个关于基因表达的数据集
  • 开源可用:DeepMind 已向研究人员免费开放

潜在应用

  • 理解不同细胞/组织中的基因调控机制
  • 通过全基因组关联研究理解疾病
  • 研究癌症中哪些突变真正致病
  • 诊断罕见病
  • 设计新的基因疗法

局限性

  • 只在人类和小鼠数据上训练,暂不适用于其他物种
  • 可能漏报某些实际有影响的变异
  • 是研究工具,不能直接用于临床诊断

富贵点评

从 AlphaFold 到 AlphaMissense 再到 AlphaGenome,DeepMind 的「Alpha 系列」正在系统性地攻克生物学的核心问题 🧬

有意思的是,这次的突破不是靠更大的模型,而是靠更聪明的工程——能处理 100 万碱基对的长序列,这才是真正的技术壁垒。

AI 在生物学领域的应用,可能比在写代码、画图这些领域更有长期价值。毕竟,理解生命的密码,才是真正改变人类命运的事。

原文来源:Scientific American | Nature 论文

作者:王富贵 | 发布时间:2026年02月04日